Перейти к содержимому
Для публикации в этом разделе необходимо провести 50 боёв.
NukeDemon

UGM-133A Трайдент II (D5)

В этой теме 8 комментариев

Рекомендуемые комментарии

33 публикации

UGM-133A Трайдент II (D5)

Изображение

UGM-133A Трайдент II (D5) — американская трёхступенчатая баллистическая ракета, предназначенная для запуска с атомных подводных лодок. Ракета имеет максимальную дальность 11 300 км и обладает разделяющейся головной частью с блоками индивидуального наведения, оснащёнными термоядерными зарядами мощностью 475 и 100 килотонн. Благодаря высокой точности БРПЛ способна эффективно поражать малоразмерные высокозащищённые цели — углублённые бункеры и шахтные пусковые установки межконтинентальных баллистических ракет. По состоянию на 2010 год «Трайдент II» — единственная БРПЛ, оставшаяся на вооружении ПЛАРБ ВМС США и ВМФ Великобритании. Боезаряды, развёрнутые на «Трайдент II», составляют 52 % от СЯС США и 100 % — СЯС Великобритании.
Вместе с ракетой «Трайдент I» является частью ракетного комплекса «Трайдент». В 1990 году принята на вооружение ВМС США. Носителями ракетного комплекса «Трайдент» являются 14 ПЛАРБ типа «Огайо». В 1995 году принята на вооружение Королевского ВМФ Великобритании. Ракетами «Трайдент II» вооружены 4 ПЛАРБ типа «Вэнгард».

История


http://rbase.new-fac...dent2/d5_19.gif



В 1990 году были завершены испытания новой баллистической ракеты подводных лодок (БРПЛ) Trident-2 и она была принята на вооружение. Эта БРПЛ, как и предшествующая ей Trident-1, входит в состав стратегического ракетного комплекса Trident, носителем которого являются атомные ракетные подводные лодки (ПЛАРБ) типов "Огайо" и "Лафайет". Комплекс систем этого ракетоносца обеспечивает выполнение боевых задач в любой точке мирового океана, в том числе и в высоких арктических широтах, а точность стрельбы в сочетании с мощными боеголовками позволяет ракетам эффективно поражать малоразмерные защищенные цели, такие как шахтные пусковые установки МБР, командные центры и другие военные объекты. Заложенные при разработке ракетной системы Trident-2 модернизационные возможности, по мнению американских специалистов, позволяют сохранить ракету на вооружении морских СЯС значительное время.


Комплекс Trident-2 значительно превосходит Trident-1 по мощности ядерных зарядов и их количеству, точности и дальности стрельбы. Увеличение мощности ядерных боезарядов и повышение точности стрельбы обеспечивают БРПЛ Trident-2 возможность эффективно поражать сильно защищенные малоразмерные цели, в том числе шахтные пусковые установки МБР.


Основные фирмы, участвующие в разработке БРПЛ Trident-2:

  • Lockheed Missiles and Space(г.Саннивейл, штат Калифорния) - головной разработчик;
  • Hercules u Morton Thiokol (г.Магна, штат Юта) - РДТТ 1-ой и 2-ой ступеней;
  • Chemical Sistems (отделение фирмы United Technologies, г. Сан-Хосе, штат Калифорния) - РДТТ 3-ей ступени;
  • Ford Aerospace (г. Ньюпорт Бич, штат Калифорния) - клапанный блок двигателей;
  • Atlantic Research (г. Гейнсвилл, штат Вирджиния) - газогенераторы ступеней разведения;
  • General Electric (г. Филадельфия, штат Пенсильвания) - головная часть;
  • Лаборатория Дрейпера (г. Кембридж, штат Массачусетс) - cистема наведения.

Программа летно-конструкторских испытаний была завершена в феврале 1990 года и предусматривавала проведение 20 пусков с наземной ПУ и пять с борта ПЛАРБ:

  • 21 марта 1989 Спустя 4 секунды после начала полета, находясь на высоте68 м (225 футов), произошел подрыв ракеты. Неудача произошла из-за механической или электронной неполадки в карданном подвесе сопла, управляющим ракетой. Причиной самоуничтожения ракеты были высокие угловые скорости и перегрузки.
  • 02.08.89 Испытание прошло успешно
  • 15.08.89 РДТТ 1-ой ступени нормально воспламенился, но на 8 с после старта и на 4 с после выхода ракеты из-под воды сработала система автоматического подрыва ракеты. Причиной подрыва ракеты явилось повреждение системы управления вектором тяги РДТТ и, вследствие этого, отклонение от расчетной траектории полета. Повреждение получили так же эл. кабели первой ступени, что инициировало бортовую систему самоликвидации.
  • 04.12.89 Испытание прошло успешно
  • 13.12.89 Испытание прошло успешно
  • 13.12.89 Испытание прошло успешно. Пуск ракеты был произведен с глубины 37,5 м. Подводная лодка двигалась со скоростью относительно воды в 3-4 узла. Абсолютная скорость была равна нулю. Курс ПЛ составлял 175 градусов, азимут пуска 97 градусов.
  • 15.12.90 Четвертый успешный запуск подряд из подводного положения.
  • 16.01.90 Испытание прошло успешно.

Испытательные пуски с подводной лодки выявили необходимость внесения изменений в конструкцию первой ступени ракеты и пусковой шахты, что, в конечном счете, повлекло задержку сроков принятия ракеты на вооружение и снижение ее дальности полета. Конструкторам пришлось решить проблему защиты соплового блока от воздействия водяного столба, возникающего при выходе БРПЛ из-под воды. После завершения испытаний «Трайдент-D5» поступила на вооружение в 1990 году. Trident-2 входит в состав стратегического ракетного комплекса "Trident", носителем которого являются атомные ракетные подводные лодки (ПЛАРБ) типов "Огайо" и "Лафайет".

http://rbase.new-fac...nt2/trident.jpg

Командование ВМС США рассчитывает, что ракетный комплекс Trident-2, созданный с использованием новейших технологий и материалов, будет оставаться на вооружении в последующие 20-30 лет при постоянном его совершенствовании. В частности, для ракет Trident проводилась разработка маневрирующих боеголовок, с которыми связываются большие надежды по повышению эффективности преодоления системы ПРО противника и поражения глубокоукрытых под землей точечных объектов. В частности, БРПЛ Trident-2 планируется оснастить маневрирующими боеголовками МАРВ (MARV - Maneouverable Re-entry Vehicle) с радиолокационными датчиками или инерциальными системами наведения на лазерном гироскопе. Точность наведения (КВО), по расчетам американских специалистов, может составить 45 и 90 м соответственно. Для этой боеголовки разрабатывается ядерный боеприпас проникающего типа. По заявлению специалистов из Ливерморской лаборатории радиации (штат Калифорния), технологические трудности при конструировании такой боеголовки уже преодолены и проведены испытания опытных образцов. После отделения от ГЧ боеголовка совершает маневрирование для уклонения от средств ПРО противника. При подлете к земной поверхности ее траектория меняется, а скорость снижается, что обеспечивает проникновение в грунт под соответствующим углом входа. При проникновении в земную поверхность на глубину несколько метров она взрывается. Этот вид оружия предназначен для уничтожения различных объектов, в том числе высокозащищенных подземных командных центров военно-политического руководства, командных пунктов стратегических сил, ракетно-ядерных средств и других объектов.



Конструкция


Изображение

1 — аэродинамическая игла (в сложенном положении); 2 — двигатель третьей ступени; 3 — носовой колпак; 4 — боевые блоки W88/Mk5; 5 — носовой обтекатель; 6 — отсек оборудования, включая боевую ступень; 7 — двигатель второй ступени; 8 — переходный отсек; 9 — двигатель первой ступени

Конструкция маршевых ступеней

Spoiler

Ракета «Трайдент-2» — трёхступенчатая, с расположением ступеней типа «тандем». Длина ракеты 13 530 мм (532,7 дюйма), максимальная стартовая масса 59 078 кг (130 244 фунтов)[1]. Все три маршевые ступени оснащены РДТТ. Первая и вторая ступень имеют диаметр 2108 мм (83 дюйма) и соединены между собой переходным отсеком. Носовая часть имеет диаметр 2057 мм (81 дюйм). Включает в себя двигатель третьей ступени, занимающий центральную часть головного отсека и ступень разведения с боевыми блоками расположенную вокруг него. От внешних воздействий носовая часть закрыта обтекателем и носовым колпаком с раздвижной телескопической аэродинамической иглой.
Двигатели первой и второй ступеней разрабатывались совместным предприятием созданным фирмами Hercules Inc. (англ. Hercules Inc.) и Thiokol. Корпуса двигателей первой и второй ступени являются одновременно корпусом соответствующих ступеней и изготовлены из углерод-эпоксидного композита. Двигатель третьей ступени разрабатывался фирмой United Technologies Corp. и первоначально выполнялся из кевлар-эпоксидного композита. Но в процессе производства, после 1988 года, его также стали изготавливать из углерод-эпоксидного композита. Это дало прирост дальности (за счёт снижения массы корпуса) и устранило возникновение электростатических потенциалов пары углерод / кевлар.
В РДТТ «Трайдент-2» применяется смесевое ракетное топливо. 75 процентов топлива составляют твёрдые компоненты — октоген, алюминий, и перхлорат аммония. В качестве связующего используются полиэтиленгликоль, нитроцеллюлоза, нитроглицерин и гексадиизоцианат. Отличия от топлива «Трайдент-1» заключаются в применении полиэтиленгликоля (PEG) вместо полигликоль адипата (PGA). Это позволило увеличить процент твёрдых веществ с 70 до 75. Топливо получило обозначение PEG/NG75. Производитель топлива фирма Joint Venture дала ему обозначение NEPE-75 (от англ. Nitrat Ester Plasticized Polyether — полиэфир, пластифицированный эфиром азотной кислоты).
Двигатели всех трёх ступеней имеют качающееся утопленное сопло облегчённой конструкции из композитного материала на основе графита. В отличие от применённых на «Трайдент-1» сегментированных сопловых вставок из пиролитического графита, в соплах на «Трайдент-2» применена более стойкая к износу при повышенных температурах цельная вставка из углерод-углеродного композита.
На всех трёх ступенях управляющее усилие по тангажу и рысканью осуществляется за счёт управления вектором тяги с помощью отклонения сопел. Управление по углу крена не ведётся. Его корректировка производится при работе двигательной установки блока разведения. Углы поворота сопел подобраны исходя из потребных усилий для корректировки траектории и не превышают 6—7°. Как правило, максимальное отклонение составляет 2—3° при включении двигателя после выхода из воды. Во время остального полёта обычно не превышает 0,5°.
Тяга двигателя первой ступени — 91 170 кгс. После включения двигателя первой ступени ракета поднимается вертикально и начинает отрабатывать программу полёта. Время работы двигателя первой ступени 65 секунд. На высоте порядка 20 км, после выключения двигателя первой ступени, происходит отстрел первой ступени и включение двигателя второй ступени. Этот двигатель также работает 65 секунд, после чего происходит его выключение и запуск двигателя третьей ступени. Через 40 секунд, происходит отключение двигателя третьей ступени, её отделение и начинается этап разведения боеголовок.
Головной обтекатель защищает ракету при движении в воде и плотных слоях атмосферы. Отделение обтекателя производится во время работы второй ступени. Увод обтекателя с траектории ракеты производится с помощью твердотопливных двигателей. Для снижения аэродинамического сопротивления в плотных слоях используется раздвижная телескопическая аэродинамическая игла. Конструктивно она из себя представляет раздвижную штангу из 7 частей с диском на конце. До старта игла в сложенном состоянии находится в головном обтекателе в нише двигателя третьей ступени. Её выдвижение происходит с помощью порохового аккумулятора давления на высоте около 600 метров в течение 100 мс. Применение иглы позволило значительно увеличить дальность полёта ракеты. Для ракеты «Трайдент-1» прибавка в дальности составила 550 км.

Конструкция головной части


Изображение
1. Первичный пусковой заряд ("триггер")
2. Вторичный заряд
3. "Корпус-толкатель": корпус капсулы, по форме арахиса, направляющий рентгеновские лучи от первичного заряда к вторичному
4. Пластмасса-наполнитель "корпуса-толкателя"
5. Бустер емкости с тритием
A. Инициирующий заряд взрывчатки
B. Плутоний-239
C. Тритий и Дейтерий
D. Дейтерид Лития-6
E. Инициатор из Урана-235
F. Обжимающий заряд из Урана-235
G. Корпус из Урана-238
Головная часть ракет разрабатывалась фирмой «Дженерал электрик». В её состав кроме ранее указанных обтекателя и РДТТ третьей ступени входят приборный отсек, боевой отсек и двигательная установка. В приборном отсеке устанавливаются системы управления, разведения боеголовок, источники электропитания и другое оборудование. Система управления контролирует работу всех трёх ступеней ракеты и ступени разведения.
ЭВМ и управляющие цепи, входящие в систему управления Mk6, размещены в блоке в нижней части приборного отсека. Также в задней части ступени разведения расположен второй блок в составе гиростабилизированный платформы (два гироскопа, три акселерометра и датчики системы астрокоррекции) и системы термостатирования. В верхней части приборного отсека расположена система разведения боеголовок. Эта система производит выработку команд на маневрирование боевой ступени, вводит данные в системы подрыва боеголовок (высоту подрыва), производит их взведение и вырабатывает команду на отделение боевых блоков.
В состав двигательной установки ступени разведения входят четыре газогенератора и 16 «щелевых» сопел. Для разгона ступени разведения и её стабилизации по тангажу и рысканью предназначены четыре сопла расположенных на верхней части и четыре на нижней. Оставшиеся восемь сопел предназначены для создания управляющих усилий по крену. Газогенераторы разрабатывались фирмой «Atlantic research», представляют собой пороховые газогенераторы с удельным импульсом порядка 236 с и объединены в два блока. Блок «А» в составе двух газогенераторов начинает работу после отделения РДТТ третьей ступени. Блок «Б» из ещё двух газогенераторов включается после прекращения работы блока «А». Истечение газа из сопел производится постоянно. Управляющие усилия возникают за счёт перекрытия / раскрытия части сопел.
По сравнению со схемой работы ступени разведения ракеты «Трайдент-1», на «Трайдент-2» введён ряд усовершенствований. В отличие от полёта С4, на участке разгона боевые блоки смотрят «вперёд». После отделения РДТТ третьей ступени происходит ориентация ступени разведения в положение необходимое для астрокоррекции. После этого на основании уточнённых координат БЦВМ производит расчёт траектории, ступень ориентируется блоками вперёд и происходит разгон до необходимой скорости. Ступень разворачивается и происходит отделение одного боевого блока как правило вниз по отношению к траектории под углом 90 градусов. В том случае если отделяемый блок находится в поле действия одного из сопел, оно перекрывается. Три оставшихся работающих сопла начинают разворот боевой ступени. Тем самым снижается воздействие на ориентацию боевого блока двигательной установки, что повышает точность. После ориентирования по ходу полёта начинается цикл для следующего боевого блока — разгон, разворот и отделение. Эта процедура повторяется для всех боеголовок. В зависимости от удаления района пуска от цели и траектории ракеты боеголовки достигают объектов поражения через 15—40 мин после запуска ракеты.
В боевом отсеке могут размещаться до 8 боеголовок W88 мощностью 475 кт или до 14 W76 мощностью 100 кт. При максимальной нагрузке ракета способна забросить 8 блоков W88 на дальность 7838 км[16].
По результатам испытаний блока W76 в конструкцию W88 был внесён ряд изменений. В конструкции носового обтекателя применён носок из углерод-углеродного композита с металлизированным центральным стержнем. В результате этого при проходе через плотные слои атмосферы происходит более равномерная абляция материала носка и снижается отклонение боевого блока.
Эти усовершенствования, а также применение на ракете аппаратуры астрокоррекции в совокупности с повышением эффективности навигационной системы ПЛАРБ позволило получить для блоков W88 КВО 120 метров. При использовании в ИНС для коррекции координат системы NAVSTAR КВО достигает 90 метров. При поражении ракетных шахт противника используется так называемый способ «2 по 1» — нацеливание на одну шахту МБР двух боевых блоков с разных ракет. При этом вероятность поражения цели составляет 0,95. Производство блоков W88 было ограничено 400 единицами[18]. Поэтому большинство ракет вооружается ББ W76. В случае использования двух менее мощных блоков при способе «2 по 1» вероятность выполнения задачи снижается до 0,84.
Британские боеголовки разрабатывались лабораторией Atomic Weapons Establishment в Aldermaston. Разработка велась при активном участии специалистов из США. Эти боеголовки конструктивно подобны боеголовкам W-76. Согласно неподтверждённым данным в британской боеголовке используется корпус Mk4 от боевого блока W-76, а британские специалисты занимались разработкой ядерного боезаряда. В отличие от американских боеголовок британские имеют три опции подрыва — 0,3 кт, 5—10 кт и 100 кт.

Система хранения и пуска ракет


http://rbase.new-fac...nt_2_scheme.jpg
Для ракеты «Трайдент II», традиционно для американского флота, применён «сухой» метод старта — из сухой ракетной шахты, без заполнения её водой. На ПЛАРБ «Огайо», вооружённых комплексом «Трайдент II», установлена система хранения и пуска ракет Mk35 mod 1. Система состоит из шахтных пусковых установок, подсистемы выброса ракеты, подсистемы контроля и управления пуском и погрузочного оборудования ракет. Ракетная шахта представляет собой стальной цилиндр, жёстко закреплённый в корпусе лодки. С целью возможности установки «Трайдент II» ракетная шахта по сравнению с предыдущими лодками типа «Лафайет» была увеличена (диаметр составляет 2,4 метра, а длина 14,8 метров). Шахта сверху закрывается крышкой с гидравлическим приводом. Крышка обеспечивает герметизацию шахты и рассчитана на то же давление, что и прочный корпус. Пусковая установка имеет четыре контрольно-наладочных лючка для проведения осмотров. Один люк расположен на уровне первой палубы ракетного отсека. Два люка, предназначенные для доступа к приборному отсеку и разъёму — на уровне второй палубы. Ещё один люк, для доступа к подракетной камере, расположен на уровне четвёртой палубы. Специальный механизм блокировки обеспечивает защиту от несанкционированного проникновения и управляет открытием крышки и технологических лючков.
Внутри шахты устанавливается пусковой стакан и оборудование подачи парогазовой смеси. Пусковой стакан накрывается мембраной, предотвращающей попадание воды внутрь при открывании крышки во время старта. Мембрана имеет куполообразную форму и изготавливается из фенольной смолы, армированной асбестом. При запуске ракеты, с помощью установленных на её внутренней стороне профилированных зарядов взрывчатого вещества, мембрана разрушается на центральную и несколько боковых частей. Пусковая шахта оснащена штекерным разъёмом нового типа, предназначенным для соединения ракеты с системой управления стрельбой, автоматически отсоединяемым в момент пуска ракеты.
Перед пуском в шахте создаётся избыточное давление. В каждой шахте для формирования парогазовой смеси установлен пороховой аккумулятор давления (ПАД). В пусковой установке смонтирован патрубок для подачи парогазовой смеси и подракетная камера, в которую поступает парогаз. Газ, выходя из ПАД-а, проходит через камеру с водой, частично охлаждается и, поступая в нижнюю часть пускового стакана, выталкивает ракету с ускорением порядка 10g. Ракета выходит из шахты со скоростью приблизительно 50 м/с. При движении ракеты вверх происходит разрыв мембраны и в шахту начинает поступать забортная вода. Крышка шахты закрывается автоматически после выхода ракеты. Вода из шахты выкачивается в специальную заместительную цистерну. Для удержания подводной лодки в стабильном положении и на заданной глубине производится управление работой гироскопических стабилизирующих устройств и перекачка водного балласта.
Пуск ракет может осуществляться с 15—20-секундным интервалом с глубины до 30 метров, при скорости хода около 5 узлов и волнении моря до 6 баллов. Все ракеты могут быть выпущены в одном залпе, но испытательные пуски всего боекомплекта никогда не производились. В воде происходит неуправляемое движение ракеты и после выхода из воды по данным сигнала датчика ускорений включается двигатель первой ступени. В штатном режиме включение двигателя происходит на высоте 10—30 метров над уровнем моря.

Система управления ракетной стрельбой


Система управления ракетной стрельбой предназначена для расчёта данных стрельбы и ввода их в ракету, осуществления предстартовой подготовки, контроля процесса пуска ракет и последующих операций, обеспечения возможности обучения личного состава проведению ракетных стрельб в режиме тренажёра.
На ПЛАРБ типа «Огайо» установлена система управления стрельбой Mk 98. Система позволяет осуществлять перенацеливание ракет в процессе патрулирования ПЛАРБ. При этом возможно как использование подготовленной программы полёта, так и выработка новой программы полёта ракеты по переданным на лодку координатам целей. Перевод всех ракет в состояние минутной готовности к старту осуществляется в течение 15 минут. Во время предстартовой подготовки возможно перенацеливание одновременно всех ракет.
Система управления ракетной стрельбой включает в себя две основные ЭВМ, периферийные ЭВМ, пульт управления ракетной стрельбой, линии передачи данных и вспомогательное оборудование. Основные ЭВМ предназначены для решения задач по составлению программ полёта ракет и управления ракетным комплексом. Периферийные ЭВМ обеспечивают хранение и дополнительную обработку данных, их отображение и ввод в основные ЭВМ. Пульт управления ракетной стрельбой расположен в центральном посту подводной лодки и предназначен для контроля всех этапов предстартовой подготовки, подачи команды на пуск и контроля послепусковых операций.



Эксплуатация ракет и текущее состояние


Носителями ракет в ВМС США являются подводные лодки типа «Огайо», каждая из которых вооружена 24 ракетами. По состоянию на 2009 год ВМС США располагают 14 лодками этого типа. Ракеты устанавливаются в шахты ПЛАРБ при выходе на боевое дежурство. После возвращения с боевого дежурства ракеты выгружаются с лодки и перемещаются в специальное хранилище. Хранилищами ракет оборудованы только ВМБ Бангор и Кингс-Бей. Во время пребывания ракет в хранилище на них проводятся работы по техническому обслуживанию.
Пуски ракет осуществляются в процессе тестовых испытаний. Тестовые испытания производятся в основном в двух случаях. После существенных модернизаций и для подтверждения боеспособности пуски ракет осуществляются в испытательных и исследовательских целях. Также в рамках приёмо-сдаточных испытаний при принятии на вооружение и после капитального ремонта каждая ПЛАРБ производит контрольно-тестовый запуск ракет.
По планам в 2010—2020 две лодки будут находиться на капитальном ремонте с перезарядкой реактора. По состоянию на 2009 год КОН лодок типа «Огайо» составляет 0,6, поэтому в среднем на боевом дежурстве будут находиться 8 лодок и в постоянной готовности к запуску находиться 192 ракеты.
Договором СНВ-II предусматривалась разгрузка «Трайдент-2» с 8 до 5 боезарядов и ограничения числа ПЛАРБ 14 единицами. Но в 1997 году выполнение этого договора было заблокировано Конгрессом с помощью специального закона.
8 апреля 2010 года президентами России и США был подписан новый договор по ограничению стратегических наступательных вооружений — СНВ-III. По положениям договора ограничивается общее число развёрнутых ядерных боезарядов 1550 единицами для каждой из сторон. Общее число развёрнутых межконтинентальных баллистических ракет, баллистических ракет подводных лодок и стратегических бомбардировщиков-ракетоносцев для России и США не должно превышать 700 единиц, и ещё 100 носителей могут быть в резерве, в неразвёрнутом состоянии. Под действие этого договора попадают и ракеты «Трайдент-2». По состоянию на 1 июля 2009 года США располагали 851 носителем и часть из них должна быть сокращена. Пока планы США не оглашаются, поэтому коснётся ли данное сокращение «Трайдент-2», достоверно неизвестно. Обсуждается вопрос сокращения количества подводных лодок типа «Огайо» с 14 до 12 при сохранении общего количества развёрнутых на них боеголовок.
Носителями ракет в ВМФ Великобритании по состоянию на 2009 год являются четыре подводных лодки типа «Вэнгард». Каждая из подводных лодок вооружена 16 ракетами. ПЛАРБ в отличие от американских комплектуются только одним экипажем и эксплуатируются с гораздо меньшим КОН. В среднем на дежурстве находится только одна лодка.


ТТХ


Общие характеристики
Максимальная дальность стрельбы, км  11000

Круговое вероятное отклонение, м  120
Диаметр ракеты, м  2,11
Длина ракеты в сборе, м  13,42
Масса снаряженной ракеты, т  57,5
Мощность заряда, кт  100 Кт (W76) или 475 Кт (W88)
Число боеголовок  14 W76 или 8 W88

I ступень
Относительная масса топлива, м  0,616
Стартовая тяговооруженность ступени  2,48
Масса , кг:
- ступени полная
- конструкции ДУ
- топлива (заряда) с бронировкой
- снаряженной ДУ
37918
2414
35505
37918
Габариты , мм:
- длина
- диаметр максимальный
6720
2110
Среднемассовый расход, кг/с  563,5
Среднее давление в камере сгорания, кгс/м2  115
Полное время работы ДУ, с  63
Удельный импульс тяги в пустоте, кгс  286,8

II ступень
Относительная масса топлива, м  0,258
Стартовая тяговооруженность ступени  3,22
Масса , кг:
- ступени полная
- конструкции ДУ
- топлива (заряда) с бронировкой
- снаряженной ДУ
16103
1248
14885
16103
Габариты , мм:
- длина
- диаметр максимальный
3200
2110
Среднемассовый расход, кг/с  323
Среднее давление в камере сгорания, кгс/м2  97
Полное время работы ДУ, с  64
Удельный импульс тяги в пустоте, кгс  299,1

III ступень

Относительная масса топлива, м  0,054
Стартовая тяговооруженность ступени  5,98
Масса , кг:
- ступени полная
- конструкции ДУ
- топлива (заряда) с бронировкой
- снаряженной ДУ
3432
281
3153
3432
Габариты , мм:
- длина
- диаметр максимальный
3480
1110
Среднемассовый расход, кг/с  70
Среднее давление в камере сгорания, кгс/м2  73
Полное время работы ДУ, с  45
Удельный импульс тяги в пустоте, кгс  306,3

Скорость(приблизительно на высоте 30 м над уровнем моря), миль/ч  15000

Неудачный пуск ракеты Трайдент 2 с борта SSBN 734 «Теннесси» 15 августа 1989 года.

Изменено пользователем NukeDemon

Рассказать о публикации


Ссылка на публикацию
Поделиться на других сайтах
4 253 публикации
370 боёв

Будет за голду на 10 лвл.

Инфа - 146%

:Smile_hiding:

Рассказать о публикации


Ссылка на публикацию
Поделиться на других сайтах
703 публикации

Просмотр сообщенияBlack_Hunter (17 Сен 2012 - 20:34) писал:

Будет за голду на 10 лвл.
Инфа - 146%
:Smile_hiding:
Смешно.

Рассказать о публикации


Ссылка на публикацию
Поделиться на других сайтах
46 публикаций

Просмотр сообщенияBlack_Hunter (17 Сен 2012 - 20:34) писал:

Будет за голду на 10 лвл.
Инфа - 146%
:Smile_hiding:
И откуда ты ее пускать будешь, уж не с торпедного ли катера? :Smile_veryhappy:

Рассказать о публикации


Ссылка на публикацию
Поделиться на других сайтах
17 015 публикаций
577 боёв

Просмотр сообщенияBes7905 (11 Дек 2012 - 19:38) писал:

И откуда ты ее пускать будешь, уж не с торпедного ли катера? :Smile_veryhappy:
За платину башенная установка ЛК 10 уровня заменяется на револьверную стартовую установку для МБР...

Рассказать о публикации


Ссылка на публикацию
Поделиться на других сайтах
46 публикаций

Просмотр сообщенияDarth_Vederkin (11 Дек 2012 - 19:43) писал:

За платину башенная установка ЛК 10 уровня заменяется на револьверную стартовую установку для МБР...
Это возможно, Но БРПЛ в игре точно не будет

Рассказать о публикации


Ссылка на публикацию
Поделиться на других сайтах
117 публикаций
219 боёв

ракета в точности наша БУЛАВА :Smile_bajan2:

Рассказать о публикации


Ссылка на публикацию
Поделиться на других сайтах
111 публикация
961 бой

Ну так вооружение одного периода всегда сходное.

Подходы к созданию оружия, практичность, применимость и прочие параметры совпадают.

Разве что будут разбираться кто у кого первый чертежи спёр  :Smile_trollface:

Рассказать о публикации


Ссылка на публикацию
Поделиться на других сайтах

  • Сейчас на странице   0 пользователей

    Эту страницу никто не просматривает.

×